Affiliation:
1. Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
2. School of Information Science and Engineering, Harbin Institute of Technology, Weihai, Shandong, China
Abstract
BACKGROUND: A timely diagnosis of early gastric cancer (EGC) can greatly reduce the death rate of patients. However, the manual detection of EGC is a costly and low-accuracy task. The artificial intelligence (AI) method based on deep learning is considered as a potential method to detect EGC. AI methods have outperformed endoscopists in EGC detection, especially with the use of the different region convolutional neural network (RCNN) models recently reported. However, no studies compared the performances of different RCNN series models. OBJECTIVE: This study aimed to compare the performances of different RCNN series models for EGC. METHODS: Three typical RCNN models were used to detect gastric cancer using 3659 gastroscopic images, including 1434 images of EGC: Faster RCNN, Cascade RCNN, and Mask RCNN. RESULTS: The models were evaluated in terms of specificity, accuracy, precision, recall, and AP. Fast RCNN, Cascade RCNN, and Mask RCNN had similar accuracy (0.935, 0.938, and 0.935). The specificity of Cascade RCNN was 0.946, which was slightly higher than 0.908 for Faster RCNN and 0.908 for Mask RCNN. CONCLUSION: Faster RCNN and Mask RCNN place more emphasis on positive detection, and Cascade RCNN places more emphasis on negative detection. These methods based on deep learning were conducive to helping in early cancer diagnosis using endoscopic images.
Subject
Health Informatics,Biomedical Engineering,Information Systems,Biomaterials,Bioengineering,Biophysics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献