Deep learning for differentiating benign from malignant tumors on breast-specific gamma image

Author:

Yu Xia1,Dong Mengchao2,Yang Dongzhu3,Wang Lianfang2,Wang Hongjie1,Ma Liyong2

Affiliation:

1. Weihai Maternal and Children Health Hospital, Weihai, Shandong, China

2. School of Information Science and Engineering, Harbin Institute of Technology, Weihai, Shandong, China

3. Weihai Municipal Hospital, Weihai, Shandong, China

Abstract

BACKGROUND: Breast diseases are a significant health threat for women. With the fast-growing BSGI data, it is becoming increasingly critical for physicians to accurately diagnose benign as well as malignant breast tumors. OBJECTIVE: The purpose of this study is to diagnose benign and malignant breast tumors utilizing the deep learning model, with the input of breast-specific gamma imaging (BSGI). METHODS: A benchmark dataset including 144 patients with benign tumors and 87 patients with malignant tumors was collected and divided into a training dataset and a test dataset according to the ratio of 8:2. The convolutional neural network ResNet18 was employed to develop a new deep learning model. The model proposed was compared with neural network and autoencoder models. Accuracy, specificity, sensitivity and ROC were used to evaluate the performance of different models. RESULTS: The accuracy, specificity and sensitivity of the model proposed are 99.1%, 98.8% and 99.3% respectively, which achieves the best performance among all methods. Additionally, the Grad-CAM method is used to analyze the interpretability of the diagnostic results based on the deep learning model. CONCLUSION: This study demonstrates that the proposed deep learning method could help physicians diagnose benign and malignant breast tumors quickly as well as reliably.

Publisher

IOS Press

Subject

Health Informatics,Biomedical Engineering,Information Systems,Biomaterials,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3