Deep learning for differentiating benign from malignant tumors on breast-specific gamma image
Author:
Affiliation:
1. Weihai Maternal and Children Health Hospital, Weihai, Shandong, China
2. School of Information Science and Engineering, Harbin Institute of Technology, Weihai, Shandong, China
3. Weihai Municipal Hospital, Weihai, Shandong, China
Abstract
Publisher
IOS Press
Subject
Health Informatics,Biomedical Engineering,Information Systems,Biomaterials,Bioengineering,Biophysics
Reference20 articles.
1. Deep learning-based breast cancer classification through medical imaging modalities: State of the art and research challenges;Murtaza;Artificial Intelligence Review.,2020
2. Molecular breast cancer imaging in the era of precision medicine;Muzahir;American Journal of Roentgenology.,2020
3. Clinical usefulness of breast-specific gamma imaging as an adjunct modality to mammography for diagnosis of breast cancer: A systemic review and meta-analysis;Sun;European Journal of Nuclear Medicine and Molecular Imaging.,2013
4. Usefulness of breast-specific gamma imaging as an adjunct modality in breast cancer patients with dense breast: A comparative study with MRI;Kim;Annals of Nuclear Medicine.,2012
5. A new positron-gamma discriminating phoswich detector based on wavelength discrimination (WLD);Ullah;Nuclear Instruments & Methods in Physics Research Section A – Accelerators Spectrometers Detectors and Associated Equipment.,2019
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multi-dimensional dense attention network for pixel-wise segmentation of optic disc in colour fundus images;Technology and Health Care;2024-07-11
2. Gastrointestinal tract disease detection via deep learning based structural and statistical features optimized hexa-classification model;Technology and Health Care;2024-07-09
3. Deep-KEDI: Deep learning-based zigzag generative adversarial network for encryption and decryption of medical images;Technology and Health Care;2024-06-20
4. Deep Learning in Breast Cancer Imaging: State of the Art and Recent Advancements in Early 2024;Diagnostics;2024-04-19
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3