Medical image segmentation using boundary-enhanced guided packet rotation dual attention decoder network

Author:

Lu Hongchun12,Tian Shengwei1,Yu Long3,Xing Yan4,Cheng Junlong25,Liu Lu6

Affiliation:

1. School of Software, Xinjiang University, Urumqi, Xinjiang, China

2. Key Laboratory of Software Engineering Technology, Xinjiang University, Urumqi, Xinjiang, China

3. Network Center, Xinjiang University, Urumqi, Xinjiang, China

4. The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China

5. School of Information Science and Engineering, Xinjiang University, Urumqi, Xinjiang, China

6. School of Educational Science, Xinjiang Normal University, Urumqi, Xinjiang, China

Abstract

BACKGROUND: The automatic segmentation of medical images is an important task in clinical applications. However, due to the complexity of the background of the organs, the unclear boundary, and the variable size of different organs, some of the features are lost during network learning, and the segmentation accuracy is low. OBJECTIVE: To address these issues, this prompted us to study whether it is possible to better preserve the deep feature information of the image and solve the problem of low segmentation caused by unclear image boundaries. METHODS: In this study, we (1) build a reliable deep learning network framework, named BGRANet,to improve the segmentation performance for medical images; (2) propose a packet rotation convolutional fusion encoder network to extract features; (3) build a boundary enhanced guided packet rotation dual attention decoder network, which is used to enhance the boundary of the segmentation map and effectively fuse more prior information; and (4) propose a multi-resolution fusion module to generate high-resolution feature maps. We demonstrate the effffectiveness of the proposed method on two publicly available datasets. RESULTS: BGRANet has been trained and tested on the prepared dataset and the experimental results show that our proposed model has better segmentation performance. For 4 class classifification (CHAOS dataset), the average dice similarity coeffiffifficient reached 91.73%. For 2 class classifification (Herlev dataset), the prediction, sensitivity, specifificity, accuracy, and Dice reached 93.75%, 94.30%, 98.19%, 97.43%, and 98.08% respectively. The experimental results show that BGRANet can improve the segmentation effffect for medical images. CONCLUSION: We propose a boundary-enhanced guided packet rotation dual attention decoder network. It achieved high segmentation accuracy with a reduced parameter number.

Publisher

IOS Press

Subject

Health Informatics,Biomedical Engineering,Information Systems,Biomaterials,Bioengineering,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3