Adsorption of rhodamine B and Cr3+ ion onto graphene/chitosan composite

Author:

Li Yanji,Ni Meng,He Qiang,Li Xiang,Zhang Wei,Wang Huihui

Abstract

Graphene and chitosan acted as the adsorbents for simulated wastewater with rhodamine B. The novel material produced by freeze-drying obviously outperformed graphene and chitosan in treating rhodamine B. Factors (e.g., contaminant concentration, reaction time, solution pH value, adsorption dose and temperature) overall impacted the adsorption. The optimal conditions for graphene-chitosan treatment of dyes included the concentration of pollutants at 400 mg/L, the dose of adsorbent as 5 mg, the solution pH at 4 and at 25∘C, and for 12 h, in which the maximal treatment amount reached 858.00 mg/g. The adsorption processes of Chitosan/graphene composites and magnetic Chitosan/graphene composites for simulated wastewater from Rhodamine B reactor followed Langmuir and Freundlich models, respectively. The in-particle diffusion model shows that the adsorption process of the composites for Rhodamine B simulated wastewater is not determined by either surface diffusion or in-particle diffusion. The magnetic Chitosan/graphene composites exhibit high recyclability, which can be respectively reused 3 times and 5 times and retain 80% adsorption capacity after being administrated with Rhodamine B simulated wastewater. By analyzing grey correlation degree, it is demonstrated that the concentration of pollutants and the reaction temperature critically affect the adsorption capacity. The electrochemical treatment with graphite rod for the Cr3+ was under the initial voltage of 30.6 V, at the pH of 5.59, and at the temperature of 18.5∘C; the removal rate of the samples was nearly 62.35% with the chromium ion concentration declined from 0.3333 g/L to 0.1255 g/L.

Publisher

IOS Press

Subject

Computational Mathematics,Computer Science Applications,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3