The Effect of Uncertainty in Whole Building Simulation Models for Purposes of Generating Control Strategies

Author:

Seeam Amar Kumar1,Laurenson David2,Usmani Asif3

Affiliation:

1. Middlesex University Mauritius, Mauritius

2. The University of Edinburgh, Scotland, United Kingdom

3. Hong Kong Polytechnic University, Hong Kong

Abstract

Buildings consume a significant amount of energy worldwide in maintaining comfort for occupants. Building energy management systems (BEMS) are employed to ensure that the energy consumed is used efficiently. However these systems often do not adequately perform in minimising energy use. This is due to a number of reasons, including poor configuration or a lack of information such as being able to anticipate changes in weather conditions. We are now at the stage that building behaviour can be simulated, whereby simulation tools can be used to predict building conditions, and therefore enable buildings to use energy more efficiently, when integrated with BEMS. What is required though, is an accurate model of the building which can effectively represent the building processes, for building simulation. Building information modelling (BIM) is a relatively new method of representing building models, however there still remains the issue of data translation between a BIM and simulation model, which requires calibration with a measured set of data. If there a lack of information or a poor translation, a level of uncertaintly is introduced which can affect the simulation’s ability to accurate predict control strategies for BEMS. This paper explores effects of uncertainty, by making assumptions on a building model due to a lack of information. It will be shown that building model calibration as a method of addressing uncertainty is no substitute for a well defined model.

Publisher

IOS Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance Comparison of ESP-r in Containers vs Virtual Machines for Digital Twins;2024 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD);2024-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3