Analyzing the generalizability of the network-based topic emergence identification method

Author:

Jung Sukhwan1,Segev Aviv1

Affiliation:

1. Department of Computer Science, University of South Alabama, 150 Student Services Dr, Mobile, USA

Abstract

Topic evolution helps the understanding of current research topics and their histories by automatically modeling and detecting the set of shared research fields in academic publications as topics. This paper provides a generalized analysis of the topic evolution method for predicting the emergence of new topics, which can operate on any dataset where the topics are defined as the relationships of their neighborhoods in the past by extrapolating to the future topics. Twenty sample topic networks were built with various fields-of-study keywords as seeds, covering domains such as business, materials, diseases, and computer science from the Microsoft Academic Graph dataset. The binary classifier was trained for each topic network using 15 structural features of emerging and existing topics and consistently resulted in accuracy and F1 over 0.91 for all twenty datasets over the periods of 2000 to 2019. Feature selection showed that the models retained most of the performance with only one-third of the tested features. Incremental learning was tested within the same topic over time and between different topics, which resulted in slight performance improvements in both cases. This indicates there is an underlying pattern to the neighbors of new topics common to research domains, likely beyond the sample topics used in the experiment. The result showed that network-based new topic prediction can be applied to various research domains with different research patterns.

Publisher

IOS Press

Subject

Computer Networks and Communications,Computer Science Applications,Information Systems

Reference42 articles.

1. Tracking and predicting the evolution of research topics in scientific literature

2. The organisation of Corporate Foresight: A multiple case study in the telecommunication industry;Battistella;Technological Forecasting and Social Change.,2014

3. Dynamic topic models

4. Latent Dirichlet allocation;Blei;J. Mach. Learn. Res.,2003

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3