An update on the knee osteoarthritis severity grading using wide residual learning

Author:

Helwan Abdulkader1,Azar Danielle1,Abdellatef Hamdan1

Affiliation:

1. Lebanese American University, Byblos, Lebanon

Abstract

BACKGROUND: Knee Osteoarthritis (KOA) is the most common type of Osteoarthritis (OA) and it is diagnosed by physicians using a standard 0 –4 Kellgren Lawrence (KL) grading system which sets the KOA on a spectrum of 5 grades; starting from normal (0) to Severe OA (4). OBJECTIVES: In this paper, we propose a transfer learning approach of a very deep wide residual learning-based network (WRN-50-2) which is fine-tuned using X-ray plain radiographs from the Osteoarthritis Initiative (OAI) dataset to learn the KL severity grading of KOA. METHODS: We propose a data augmentation approach of OAI data to avoid data imbalance and reduce overfitting by applying it only to certain KL grades depending on their number of plain radiographs. Then we conduct experiments to test the model based on an independent testing data of original plain radiographs acquired from the OAI dataset. RESULTS: Experimental results showed good generalization power in predicting the KL grade of knee X-rays with an accuracy of 72% and Precision 74%. Moreover, using Grad-Cam, we also observed that network selected some distinctive features that describe the prediction of a KL grade of a knee radiograph. CONCLUSION: This study demonstrates that our proposed new model outperforms several other related works, and it can be further improved to be used to help radiologists make more accurate and precise diagnosis of KOA in future clinical practice.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

Reference13 articles.

1. Patient satisfaction after total knee arthroplasty: who is satisfied and who is not?;Bourne;Clin Orthop Relat Res,2010

2. Impact and therapy of osteoarthritis: the arthritis care on nation survey;Conaghan;Clin Rheumatol,2015

3. The epidemiology and impact of pain in osteoarthritis;Neogi;Osteoarthr Cartil,2013

4. Defining the presence of radiographic knee osteoarthritis: a comparison between the Kellgren and Lawrence system and OARSI atlas criteria;Culvenor;KneeSurg Sports Traumatol Arthrosc,2015

5. Automated classification of radiographic knee osteoarthritis severity using deep neural networks,e;Thomas;Radiology: Artificial Intelligence,2020

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3