Lite CNN Models for Real-Time Post-Harvest Grape Disease Detection

Author:

Mohimont Lucas12,Alin François1,Gaveau Nathalie2,Steffenel Luiz Angelo1

Affiliation:

1. Université de Reims Champagne Ardenne, LICIIS - LRC CEA DIGIT, 51687 Reims Cedex 2, France

2. Université de Reims Champagne Ardenne, RIBP - EA4707 - USC - INRAE 1488 51100 Reims Cedex 2, France

Abstract

Post-harvest fruit grading is a necessary step to avoid disease related loss in quality. In this paper, a hierarchical method is proposed to (1) remove the background and (2) detect images that contains grape diseases(botrytis, oidium, acid rot). Satisfying segmentation performances were obtained by the proposed Lite Unet model with 92.9% IoU score and an average speed of 0.16s/image. A pretrained MobileNet-V2 model obtained 94% F1 score on disease classification. An optimized CNN reached a score of 89% with less than 10 times less parameters. The implementation of both segmentation and classification models on low-powered device would allow for real-time disease detection at the press.

Publisher

IOS Press

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning Algorithms Aided Disease Diagnosis and Prediction of Grape Leaf;Intelligent Systems;2023-10-06

2. Clustering Based Segmentation with 1D-CNN Model for Grape Fruit Disease Detection;2023 IEEE International Conference on Integrated Circuits and Communication Systems (ICICACS);2023-02-24

3. On the Use of a Semantic Segmentation Micro-Service in AR Devices for UI Placement;2022 IEEE Games, Entertainment, Media Conference (GEM);2022-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3