Evaluating the Performance of CMIP6 GCMs to Simulate Precipitation and Temperature Over the Vietnamese Mekong Delta

Author:

Van Ty Tran1,Tri Le Hai1,Van Tho Nguyen2,Van Toan Nguyen3,Nhat Giap Minh4,Downes Nigel K.4,Kumar Pankaj5,Minh Huynh Vuong Thu4

Affiliation:

1. College of Engineering, Can Tho University, Can Tho, Vietnam

2. Department of Environment, Mien Tay Construction University, Vinh Long, Vietnam

3. Department of Human Resources, Can Tho University, Can Tho, Vietnam

4. College of Environment and Natural Resources, Can Tho University, Can Tho, Vietnam

5. Institute for Global Environmental Strategies, Hayama – 240-0115, Japan

Abstract

This study evaluates the performance of simulated precipitation and maximum and minimum temperatures in the historical runs of the Climate Model Intercomparison Project Phase 6 (CMIP6) for the Vietnamese Mekong Delta (VMD). The precipitation, as well as maximum and minimum temperatures outputs from 16 general circulation models (GCMs), were compared with observations from 12 stations for the period 1980–2014, using a set of statistical metrics, namely, normalised root mean square error (NRMSE), percentage of bias (PBIAS), Nash–Sutcliffe efficiency (NSE), coefficient of determination (R2), and volumetric efficiency (VE). Finally, ranking (total score - TS) was carried out and the probability distribution function (PDF) and Taylor diagram were used to confirm rankings. The results show that different statistical indicators reveal variation ranking order of the 16 GCMs. Based on RS ranking, it is indicated that each simulation GCM performed differently under the different metrics and no single model performed best for all metrics. The top five highest ranked GCMs based on TS were HadGEM3-GC31-LL, ACCESS-CM2, CanESM5, NESM3 and CanESM5-CanOE for precipitation; and CNRM-CM6-1, CNRM-ESM2-1, GFDL-ESM4, NESM3 and INM-CM5-0 for the maximum; and CNRM-CM6-1, CNRM-ESM2-1, GFDL-ESM4, NESM3 and INM-CM5-0 for minimum temperatures, respectively. We also observed an underestimation of precipitation and an overestimation of temperature over the study area. The TS method demonstrates efficiency to aggregate the multi-model ensemble GCMs based on different statistical indicators which were sometimes contradictory. The findings from this study provide useful guidance in the selection of GCMs for climate change applications in the VMD.

Publisher

IOS Press

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3