Automated classification of MRI images for mild cognitive impairment and Alzheimer’s disease detection using log gabor filters based deep meta-heuristic classification

Author:

Shanthi A.S.1,Ignisha Rajathi G.2,Velumani R.3,Srihari K.4

Affiliation:

1. Department of Computer Science and Engineering, Tamilnadu College of Engineering, Karumathampatti, Coimbatore, Tamilnadu, India

2. Department of Computer Science and Business Systems, Sri Krishna College of Engineering and Technology, Kuniamuthur, Coimbatore, Tamilnadu, India

3. Department of Computer Science and Engineering, Gayatri Vidya Parishad College of Engineering (A), Madhurawada, Andhra Pradesh, Tamilnadu, India

4. CSE, SNSCT

Abstract

In older people, mild cognitive impairment (MCI) is a precursor to more severe forms of dementia like AD (AD). In diagnosing patients with primary AD and amnestic MCI, modern neuroimaging techniques, especially MRI, play a key role. To efficiently categorize MRI images as normal or abnormal, the research presents a machine learning-based automatic labelling system, with a focus on boosting performance via texture feature analysis. To this end, the research implements a preprocessing phase employing Log Gabor filters, which are particularly well-suited for spatial frequency analysis. In addition, the research uses Gray Wolf Optimization (GWO) to acquire useful information from the images. For classification tasks using the MRI images, the research also make use of DenseNets, a form of deep neural network. The proposed method leverages Log Gabor filters for preprocessing, Gray Wolf Optimization (GWO) for feature extraction, and DenseNets for classification, resulting in a robust approach for categorizing MRI images as normal or abnormal. When compared to earlier trials performed without optimization, the proposed systematic technique shows a significant increase in classification accuracy of 15%. For neuroimaging applications, our research emphasizes the use of Log Gabor filters for preprocessing, GWO for feature extraction, and DenseNets for classification, which can help with the early detection and diagnosis of MCI and AD.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3