Leaf disease classification with Multiple-model deep learning

Author:

Tran-Anh Dat1,Nguyen Huu Quynh2,Nguyen Thi Phuong Thao1,Dao Thi Thuy Quynh3

Affiliation:

1. Faculty of Information Technology, Thuyloi University, Hanoi, Vietnam

2. Head of the Strong Research Group on Machine Learning Techniques and Intelligent Control, Thuyloi University, Hanoi, Vietnam

3. Faculty of Information Technology, Posts and Telecommunications Institute of Technology, Hanoi, Vietnam

Abstract

The wilting of leaves caused by disease poses risks to both harvest yield and the environment. Therefore, the timely detection of disease signs on leaves is crucial to enable farmers to prevent disease outbreaks and safeguard their crops. However, manually observing all diseased leaves on a large scale demands substantial time and human effort. In this study, we propose an effective method for automated disease detection on leaves. Specifically, this method utilizes images captured from mobile phones. The proposed technique combines four models (ensemble of models) with distinct features: (1) ResNeXt50 model with a high-quality image processing, (2) ViT model with a low-quality image processing, (3) Efficientnet B5 model combines a self-learning with noisy input, and (4) Mobilenet V3 model with image segmentation. Experimental results demonstrate that the proposed method outperforms some of the state-of-the-art methods on TLU-Leaf dataset (ours) with F1-score of 90% and Cassava Leaf Disease dataset with F1-score of 87%.

Publisher

IOS Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparative Analysis of Cassava Leaf Disease Prediction Using the Deep Learning Approach;2024 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS);2024-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3