Enhancing security in wireless sensor networks: A fusion of deep learning and energy-efficient routing

Author:

Sowndeswari S.12,Kavitha E.3,Krishnamoorthy Raja4

Affiliation:

1. Department of Electronics and Communication Engineering, Sir M Visvesvaraya Institute of Technology, Bangalore

2. Department of Electronics and Communication Engineering, Sambhram Institute of Technology, Bangalore & Visvesvaraya Technological University, Belagavi, Bangalore

3. Department of Electronics and Telecommunication Engineering,Sir M Visvesvaraya Institute of Technology, Bangalore & Visvesvaraya Technological University, Belagavi, Bangalore

4. Department of Electronics and Communication Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Virudhunagar, Tamilnadu, India

Abstract

The development of tiny sensing nodes efficient for wireless communication in Wireless Sensor Networks (WSNs) can be attributed to the rapid advancements in processors and radio technology. Data transmission occurs through multi-hop routing in WSN, which relies on nodes’ cooperation. The collaboration between nodes has rendered these networks susceptible to various attacks. It is imperative to employ a security scheme to evaluate the dependability of nodes in distinctive malicious nodes from non-malicious nodes. In recent years, there has been a growing significance placed on security-based routing protocols with energy constraints as valuable mechanisms for enhancing the security and performance of WSNs. A novel solution called the Deep Learning-based Hybrid Energy Efficient and Security System (DL-HE2S2) is introduced to address these challenges. The research workflow encompasses various essential stages, namely the deployment of nodes, the creation of clusters, the selection of cluster heads, the detection of malevolent nodes within each group, and the determination of optimal paths intra- and inter-clusters employing the routing algorithm for efficient packet transmission. The design of the algorithm is focused on achieving energy efficiency and enhancing network security while also taking into account various performance metrics, including a mean network lifetime of 187.244 hours, a throughput of 59.88 kilobits per second, an end-to-end latency of 11.939 milliseconds, a packet loss of 14.9%, a packet delivery ratio of 99.194%, network security at 92.026%, and energy usage of 19.424 J. This research examines the algorithm’s scalability and efficiency across various network sizes using a Network Simulator (NS-2). DL-HE2S2 offers valuable insights that can be applied to practical implementations in multiple applications.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3