Easily deployable real-time detection method for small traffic signs

Author:

Li Yaqin1,Zhang Ziyi1,Yuan Cao1,Hu Jing1

Affiliation:

1. School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan, China

Abstract

Traffic sign detection technology plays an important role in driver assistance systems and automated driving systems. This paper proposes DeployEase-YOLO, a real-time high-precision detection scheme based on an adaptive scaling channel pruning strategy, to facilitate the deployment of detectors on edge devices. More specifically, based on the characteristics of small traffic signs and complex background, this paper first of all adds a small target detection layer to the basic architecture of YOLOv5 in order to improve the detection accuracy of small traffic signs.Then, when capturing specific scenes with large fields of view, higher resolution and richer pixel information are preserved instead of directly scaling the image size. Finally, the network structure is pruned and compressed using an adaptive scaling channel pruning strategy, and the pruned network is subjected to a secondary sparse pruning operation. The number of parameters and computations is greatly reduced without increasing the depth of the network structure or the influence of the input image size, thus compressing the model to the minimum within the compressible range. Experimental results show that the model trained by Experimental results show that the model trained by DeployEase-YOLO achieves higher accuracy and a smaller size on TT100k, a challenging traffic sign detection dataset. Compared to existing methods, DeployEase-YOLO achieves an average accuracy of 93.3%, representing a 1.3% improvement over the state-of-the-art YOLOv7 network, while reducing the number of parameters and computations to 41.69% and 59.98% of the original, respectively, with a compressed volume of 53.22% of the previous one. This proves that the DeployEase-YOLO has a great deal of potential for use in the area of small traffic sign detection. The algorithm outperforms existing methods in terms of accuracy and speed, and has the advantage of a compressed network structure that facilitates deployment of the model on resource-limited devices.

Publisher

IOS Press

Reference35 articles.

1. The Research on autopilot system based on lightweight YOLO-V3 target detection algorithm[C];Gao;//Journal of Physics: Conference Series. IOP Publishing,2020

2. Intelligent Recognition of Traffic Signs Based on Improved YOLO v3 Algorithm[J];Yang;Mobile Information Systems,2022

3. Multi-adversarial faster-rcnn for unrestricted object detection[C];He;//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019

4. Object detection based on YOLO network[C];Liu;//2018 IEEE 4th information technology and mechatronics engineering conference (ITOEC). IEEE,2018

5. YOLO-HR: Improved YOLOv5 for Object Detection in High-Resolution Optical Remote Sensing Images[J];Wan;Remote Sensing,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3