A selective LVQ algorithm for improving instance reduction techniques and its application for text classification

Author:

Hayel Rafa1,El Hindi Khalil1,Hosny Manar1,Alharbi Rawan1

Affiliation:

1. Department of Computer Science, College of Computerand Information Sciences, King Saud University, Riyadh, SaudiArabia

Abstract

Instance-Based Learning, such as the k Nearest Neighbor (kNN), offers a straightforward and effective solution for text classification. However, as a lazy learner, kNN’s performance heavily relies on the quality and quantity of training instances, often leading to time and space inefficiencies. This challenge has spurred the development of instance-reduction techniques aimed at retaining essential instances and discarding redundant ones. While such trimming optimizes computational demands, it might adversely affect classification accuracy. This study introduces the novel Selective Learning Vector Quantization (SLVQ) algorithm, specifically designed to enhance the performance of datasets reduced through such techniques. Unlike traditional LVQ algorithms that employ random vector weights (codebook vectors), SLVQ utilizes instances selected by the reduction algorithm as the initial weight vectors. Importantly, as these instances often contain nominal values, SLVQ modifies the distances between these nominal values, rather than modifying the values themselves, aiming to improve their representation of the training set. This approach is crucial because nominal attributes are common in real-world datasets and require effective distance measures, such as the Value Difference Measure (VDM), to handle them properly. Therefore, SLVQ adjusts the VDM distances between nominal values, instead of altering the attribute values of the codebook vectors. Hence, the innovation of the SLVQ approach lies in its integration of instance reduction techniques for selecting initial codebook vectors and its effective handling of nominal attributes. Our experiments, conducted on 17 text classification datasets with four different instance reduction algorithms, confirm SLVQ’s effectiveness. It significantly enhances the kNN’s classification accuracy of reduced datasets. In our empirical study, the SLVQ method improved the performance of these datasets, achieving average classification accuracies of 82.55%, 84.07%, 78.54%, and 83.18%, compared to the average accuracies of 76.25%, 79.62%, 66.54%, and 78.19% achieved by non-fine-tuned datasets, respectively.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3