Breathing site classification via joint mel frequency cepstral coefficients and gammatone frequency cepstral coefficients approach

Author:

Zhang Jiarui1,Ling Bingo Wing-Kuen1

Affiliation:

1. School of Information Engineering, Guangdong University of Technology, Guangdong, China

Abstract

The patients with the nasopharyngeal cancer are required to breath through their mouth after performing the surgery. Hence, it is required to perform the breathing site classification and employs the classification results to indicate whether the patients breath correctly or not. Nevertheless, there is currently no such a medical aided tool in the market. To address this issue, this paper extracts both the mel frequency cepstral coefficients (MFCCs) based features and the gammatone frequency cepstral coefficients (GFCCs) based features as well as employs the random forest as the classifier for performing the breathing site classification. The data lasted for a few minutes acquired from 10 volunteers are employed to demonstrate the effectiveness of our proposed method. The computer numerical simulation results show that the average accuracy, the average specificity and the average sensitivity yielded by our proposed method are 95.30±2.00%, 93.27±3.87% and 97.15±1.87%, respectively. Although this paper proposes a method based on the fusion of two types of the acoustic features for classifying different breathing sites, the computer numerical simulation results show that our proposed method outperforms the common respiration or speech processing based methods. Besides, our proposed method is also compared to a series of relevant methods. It is found that our proposed method achieves the highest classification results at the majority signal to noise ratios among the state of the arts methods.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3