Cancer classification and biomarker selection via a penalized logsum network-based logistic regression model

Author:

Zhou Zhiming1,Huang Haihui12,Liang Yong3

Affiliation:

1. Faculty of Information Technology, Macau University of Science and Technology, Macau, China

2. Shaoguan University, Shaoguan, Guangdong, China

3. Macau Institute of Systems Engineering and Collaborative Laboratory of Intelligent Science and Systems, Macau University of Science and Technology, Macau, China

Abstract

BACKGROUND: In genome research, it is particularly important to identify molecular biomarkers or signaling pathways related to phenotypes. Logistic regression model is a powerful discrimination method that can offer a clear statistical explanation and obtain the classification probability of classification label information. However, it is unable to fulfill biomarker selection. OBJECTIVE: The aim of this paper is to give the model efficient gene selection capability. METHODS: In this paper, we propose a new penalized logsum network-based regularization logistic regression model for gene selection and cancer classification. RESULTS: Experimental results on simulated data sets show that our method is effective in the analysis of high-dimensional data. For a large data set, the proposed method has achieved 89.66% (training) and 90.02% (testing) AUC performances, which are, on average, 5.17% (training) and 4.49% (testing) better than mainstream methods. CONCLUSIONS: The proposed method can be considered a promising tool for gene selection and cancer classification of high-dimensional biological data.

Publisher

IOS Press

Subject

Health Informatics,Biomedical Engineering,Information Systems,Biomaterials,Bioengineering,Biophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3