Optimal reactive power dispatch using θ-social mimic optimization (θ-SMO)

Author:

Zand Mohammad1,Chamorro Harold R.2,Nasab Morteza Azimi3,Hosseinian Seyed Hossein4

Affiliation:

1. Young Researchers and Elite Club, Hamedan Branch, Islamic Azad University, Hamedan, Iran

2. KTH. Royal Institute of Technology IEEE Senior Member

3. Young Researchers and Elite Club, Borujerd Branch, Islamic Azad University, Borujerd, Iran

4. Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran

Abstract

The social mimic optimization algorithm (SMO) and its enhanced version (θ-SMO) is presented in the current study for the optimal dispatch problem of the reactive power (ORPD) with continuous and discrete control variables in the IEEE standard networks. The feasibleness and functioning of the θ-SMO and SMO algorithms are indicated for the IEEE 57-bus, and IEEE 118-bus standard networks. The outcomes of the simulation were compared, and it was shown that the optimization efficacy of these algorithms is higher than other rooted algorithms, such as optics in-spired optimization (OIO), the social spider algorithm (SSA) algorithm, and biogeography-based optimization (BBO). Results obtained for ORPD problem indicate better performance concerning the θ-SMO algorithm’s solution quality compared to original SMO algorithm and other algorithms.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3