Affiliation:
1. Faculty of Computer and IT Engineering, Shahrood University of Technology, Shahrood, Iran
Abstract
Coreference resolution is critical for improving the performance of all text-based systems including information extraction, document summarization, machine translation, and question-answering. Most of coreference resolution solutions rely on using knowledge resources like lexical knowledge, syntactic knowledge, world knowledge and semantic knowledge. This paper presents a new knowledge-based coreference resolution model using neural network architecture. It uses XLNet embeddings as input and does not rely on any syntactic or dependency parsers. For more efficient span representation and mention detection, we used entity-level information. Mentions were extracted from the text with an unhand engineered mention detector, and the features were extracted from a deep neural network. We also propose a nonlinear multi-criteria ranking model to rank the candidate antecedents. This model simultaneously determines the total score of alternatives and the weight of the features in order to speed up the process of ranking alternatives. Compared to the state-of-the-art models, the simulation results showed significant improvements on the English CoNLL-2012 shared task (+6.4 F1). Moreover, we achieved 96.1% F1 score on the n2c2 medical dataset.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献