State of health estimation and remaining useful life prediction for lithium-ion batteries using FBELNN and RCMNN
Author:
Affiliation:
1. College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, China
2. Department of Electrical Engineering, Yuan Ze University, Chung-Li, Taoyuan, Taiwan
Abstract
Publisher
IOS Press
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Reference39 articles.
1. An online method for lithium-ion battery remaining usefu life estimation using importance sampling and neural networks;Wu;Applied Energy,2016
2. A review of supercapacitor modeling, estimation, and applications: a control/management perspective;Zhang;Renewable and Sustainable Energy Reviews,2018
3. State of health estimation for lithium-ion batteries based on fusion of autoregressive moving average model and elman neural network;Chen;IEEE Access,2019
4. Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression;Li;Journal of Power Sources,2019
5. Remaining useful life estimation—A review on the statistical data driven approaches;Si;European Journal of Operational Research,2011
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Electric vehicle battery capacity degradation and health estimation using machine-learning techniques: a review;Clean Energy;2023-11-20
2. Improving Li-ion battery health: Predicting remaining useful life using IWBOA-ELM algorithm;Journal of Energy Storage;2023-11
3. State of Charge Estimation for Lithium-ion Battery Using Recurrent Cerebellar Model Neural Network with Kalman Filter;2023 5th Asia Energy and Electrical Engineering Symposium (AEEES);2023-03-23
4. A data-driven degradation prognostics approach for rolling element bearings;Journal of Intelligent & Fuzzy Systems;2022-09-22
5. CNN-Informer-Based Remaining Useful Life Prediction for Electrical Devices;2022 4th International Conference on Industrial Artificial Intelligence (IAI);2022-08-24
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3