A non-cooperative behavior management method for multi-attribute large group decision-making

Author:

Dong Xiaoqin1,Sun Xianbin1

Affiliation:

1. School of Civil Architecture and Environment, Hubei University of Technology, Wuhan, China

Abstract

In multi-attribute large group decision-making (MALGDM), the ideal state indicates a high degree of consensus among a set of decision-makers (DMs). It is complex to reach consensus because the number of decision attributes and DMs increases. Thus, we developed a novel consensus model to manage the decision-making in large group based on the non-cooperative behavior. The improved clustering method takes account of the similarities among different DMs. Similar DMs will be grouped into the same group. The consensus threshold is determined from an objective and subjective aspect to judge whether the consensus reaching process continues. With the introduction of three non-cooperative behaviors, we investigated a non-cooperative behavior detection method under the change of consensus level. Base on the number of DMs who are willing to change their preliminary views and the change value of consensus level, the non-cooperative degree of subgroup can be computed. According to the non-cooperative degree, the subgroups’ weight can be modified to raise the consensus level. Meanwhile, the subgroup is allowed to change. Based on the adjustment amount of DMs’ opinions, whether decision maker (DM) belongs to this subgroup is recalculated. Finally, an emergency decision-making problem in flood disaster is applied to manifest the feasibility and distinctive features of the proposed method.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3