Deep learning based algorithm (ConvLSTM) for Copy Move Forgery Detection

Author:

Elaskily Mohamed A.1,Alkinani Monagi H.2,Sedik Ahmed3,Dessouky Mohamed M.24

Affiliation:

1. Informatics Department, Electronics Research Institute (ERI), Cairo, Egypt

2. Department of Computer Science & Artificial Intelligence, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia

3. Department of the Robotics and Intelligent Machines, Faculty of Artificial Intelligence, Kafrelsheikh University, Kafrelsheikh, Egypt

4. Department of Computer Science & Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt

Abstract

Protecting information from manipulation is important challenge in current days. Digital images are one of the most popular information representation. Images could be used in several fields such as military, social media, security purposes, intelligence fields, evidences in courts, and newspapers. Digital image forgeries mean adding unusual patterns to the original images that cause a heterogeneity manner in form of image properties. Copy move forgery is one of the hardest types of image forgeries to be detected. It is happened by duplicating part or section of the image then adding again in the image itself but in another location. Forgery detection algorithms are used in image security when the original content is not available. This paper illustrates a new approach for Copy Move Forgery Detection (CMFD) built basically on deep learning. The proposed model is depending on applying (Convolution Neural Network) CNN in addition to Convolutional Long Short-Term Memory (CovLSTM) networks. This method extracts image features by a sequence number of Convolutions (CNVs) layers, ConvLSTM layers, and pooling layers then matching features and detecting copy move forgery. This model had been applied to four aboveboard available databases: MICC-F220, MICC-F2000, MICC-F600, and SATs-130. Moreover, datasets have been combined to build new datasets for all purposes of generalization testing and coping with an over-fitting problem. In addition, the results of applying ConvLSTM model only have been added to show the differences in performance between using hybrid ConvLSTM and CNN compared with using CNN only. The proposed algorithm, when using number of epoch’s equal 100, gives high accuracy reached to 100% for some datasets with lowest Testing Time (TT) time nearly 1 second for some datasets when compared with the different previous algorithms.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3