Hybrid improved slime mould algorithm with adaptive β hill climbing for numerical optimization

Author:

Sun Kangjian1,Jia Heming2,Li Yao1,Jiang Zichao1

Affiliation:

1. College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, Heilongjiang, China

2. College of Information Engineering, Sanming University, Sanming, Fujian, China

Abstract

Slime mould algorithm (SMA) is a novel metaheuristic that simulates foraging behavior of slime mould. Regarding its drawbacks and properties, a hybrid optimization (BTβSMA) based on improved SMA is proposed to produce the higher-quality optimal results. Brownian motion and tournament selection mechanism are introduced into the basic SMA to improve the exploration capability. Moreover, a local search algorithm (Adaptive β-hill climbing, AβHC) is hybridized with the improved SMA. It is considered from boosting the exploitation trend. The proposed BTβSMA algorithm is evaluated in two main phases. Firstly, the two improved hybrid variants (BTβSMA-1 and BTβSMA-2) are compared with the basic SMA algorithm through 16 benchmark functions. Also, the performance of winner is further evaluated through comparisons with 7 state-of-the-art algorithms. The simulation results report fitness and computation time. The convergence curve and boxplot visualize the effects of fitness. The comparison results on the function optimization suggest that BTβSMA is superior to competitors. Wilcoxon rank-sum test is also employed to investigate the significance of the results. Secondly, the applicability on real-world tasks is proved by solving structure engineering design problems and training multilayer perceptrons. The numerical results indicate the merits of the BTβSMA algorithm in terms of solution precision.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3