Hilbert stereo reconstruction algorithm based on depth feature and stereo matching

Author:

Kong Weiyi1,Yang Menglong2,Huang Qinzhen1

Affiliation:

1. Electrical Information Engineering, Southwest Minzu University, Chengdu, Sichuan, China

2. Aeronautics and Astronauticst, Sichuan University, Chengdu, Sichuan, China

Abstract

This paper proposes a Hilbert stereo reconstruction algorithm based on depth feature and stereo matching to solve the problem of occlusive region matching errors, namely, the Hilbert stereo network. The traditional stereo network pays more attention to disparity itself, leading to the inaccuracy of disparity estimation. Our design network studies the effective disparity matching and refinement through reconstruction representation of Hilbert’s disparity coefficient. Since the Hilbert coefficient is not affected by the occlusion and texture in the image, stereo disparity matching can conducted effectively. Our network includes three sub-modules, namely, depth feature representation, Hilbert cost volume fusion, and Hilbert refinement reconstruction. Separately, texture features of different depth levels of the image were extracted through Hilbert filtering operation. Next, stereoscopic disparity fusion was performed, and then Hilbert designed to refine the difference regression stereo matching solution was used. Based on the end-to-end design, the structure is refined by combining the depth feature extraction module and Hilbert coefficient disparity. Finally, the Hilbert stereo matching algorithm achieves excellent performance on standard big data set and is compared with other advanced stereo networks. Experiments show that our network has high accuracy and high performance.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3