Affiliation:
1. School of Business, Central South University, Changsha, China
Abstract
User rating information on multiple predefined aspects gathered by hotel recommendation systems generally shows a deviation between the overall rating and detailed criteria ratings. In this study, to address this deviation, we proposed a novel hotel recommendation method that clusters users with different preferences into different groups using the K-means algorithm. Moreover, we allocated weights to different criteria and obtained a comprehensive score. A case study on actual data from Tripadvisor.com showed that compared with three other models, our proposed model demonstrated a more impressive performance. This research can offer advantages to hotel service providers and customers in terms of decision making.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献