An efficient and precise dynamic slicing for concurrent component-oriented programs

Author:

Pujari Niharika,Ray Abhishek,Singh Jagannath

Abstract

A dynamic slicing algorithm is proposed in this paper along with its implementation which is dynamic for concurrent Component-oriented programs carrying multiple threads. As a part of representing the concurrent COP (CCOP) effectively, an intermediate graph is developed called Concurrent Component Dependency Graph (CCmDG). The system dependence graph (SDG) for individual components and interfaces are integrated to represent the above intermediate graph. It also consists of some new dependence edges which have been triggered for connecting the individual dependence graph of each component with the interface. Based on the graph created for the CCOP, a dynamic slicing algorithm is proposed, which sets the resultant by making the executed nodes marked during run time in Concurrent Components Dynamic Slicing (CCmDS) appropriately. For checking the competence of our algorithm, five case studies have been considered and also compared with an existing technique. From the study, we found that our algorithm results in smaller and precise size slice compared to the existing algorithm in less time.

Publisher

IOS Press

Subject

Artificial Intelligence,Control and Systems Engineering,Software

Reference24 articles.

1. Programmers use slices when debugging;Weiser;Communications of the ACM,1982

2. Program slicing;Weiser;IEEE Transactions on Software Engineering,1984

3. The program dependence graph in a software development environment;Ottenstein;ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Development Environments, ACM,1984

4. Interprocedural slicing using dependence graphs;Horwitz;ACM Transactions on Programming Languages and Systems (TOPLAS),1990

5. A survey of program slicing techniques;Tip;Journal of Programming Languages,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3