An novel SDA-CNN few shot domain adaptation framework for silent speech recognition

Author:

Ramkumar N.1,Karthika Renuka D.1

Affiliation:

1. Department of Information Technology, PSG College of Technology, Coimbatore, Tamil Nadu, India

Abstract

In BCI (brain-computer interface) applications, it is difficult to obtain enough well-labeled EEG data because of the expensive annotation and time-consuming data capture procedure. Conventional classification techniques that repurpose EEG data across domains and subjects lead to significant decreases in silent speech recognition classification accuracy. This research provides a supervised domain adaptation using Convolutional Neural Network framework (SDA-CNN) to tackle this problem. The objective is to provide a solution for the distribution divergence issue in the categorization of speech recognition across domains. The suggested framework involves taking raw EEG data and deriving deep features from it and the proposed feature selection method also retrieves the statistical features from the corresponding channels. Moreover, it attempts to minimize the distribution divergence caused by variations in people and settings by aligning the correlation of both the source and destination EEG characteristic dissemination. In order to obtain minimal feature distribution divergence and discriminative classification performance, the last stage entails simultaneously optimizing the loss of classification and adaption loss. The usefulness of the suggested strategy in reducing distributed divergence among the source and target Electroencephalography (EEG) data is demonstrated by extensive experiments carried out on KaraOne datasets. The suggested method achieves an average accuracy for classification of 87.4% for single-subject classification and a noteworthy average class accuracy of 88.6% for cross-subject situations, which shows that it surpasses existing cutting-edge techniques in thinking tasks. Regarding the speaking task, the model’s median classification accuracy for single-subject categorization is 86.8%, while its average classification accuracy for cross-subject classification is 87.8%. These results underscore the innovative approach of SDA-CNN to mitigating distribution discrepancies while optimizing classification performance, offering a promising avenue to enhance accuracy and adaptability in brain-computer interface applications.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3