Classification of high-dimensional imbalanced biomedical data based on spectral clustering SMOTE and marine predators algorithm

Author:

Qin Xiwen12,Zhang Siqi1,Dong Xiaogang1,Shi Hongyu1,Yuan Liping1

Affiliation:

1. School of Mathematics and Statistics, Changchun University of Technology, Changchun, China

2. Graduate School, Changchun University of Technology, Changchun, China

Abstract

The research of biomedical data is crucial for disease diagnosis, health management, and medicine development. However, biomedical data are usually characterized by high dimensionality and class imbalance, which increase computational cost and affect the classification performance of minority class, making accurate classification difficult. In this paper, we propose a biomedical data classification method based on feature selection and data resampling. First, use the minimal-redundancy maximal-relevance (mRMR) method to select biomedical data features, reduce the feature dimension, reduce the computational cost, and improve the generalization ability; then, a new SMOTE oversampling method (Spectral-SMOTE) is proposed, which solves the noise sensitivity problem of SMOTE by an improved spectral clustering method; finally, the marine predators algorithm is improved using piecewise linear chaotic maps and random opposition-based learning strategy to improve the algorithm’s optimization seeking ability and convergence speed, and the key parameters of the spectral-SMOTE are optimized using the improved marine predators algorithm, which effectively improves the performance of the over-sampling approach. In this paper, five real biomedical datasets are selected to test and evaluate the proposed method using four classifiers, and three evaluation metrics are used to compare with seven data resampling methods. The experimental results show that the method effectively improves the classification performance of biomedical data. Statistical test results also show that the proposed PRMPA-Spectral-SMOTE method outperforms other data resampling methods.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3