Deep learning techniques for monitoring speech and vision improvement in therapy patients using big data

Author:

Vimala S.1,Valarmathi K.2

Affiliation:

1. Department of Artificial Intelligence and Data Science, Panimalar Engineering College, Anna University, Chennai, Tamil Nadu, India

2. Department of Computer Science and Engineering, Panimalar Engineering College, Anna University, Chennai, Tamil Nadu, India

Abstract

This study proposes a novel method using hybrid CNN-LSTM networks to measure and predict the effectiveness of speech and vision therapy. Traditional methods for evaluating therapy often rely on subjective assessments, lacking precision and efficiency. By combining CNN for visual data and MFCC for speech, alongside LSTM for temporal dependencies, the system captures dynamic changes in patients’ conditions. Pre-processing of audio and visual data enhances accuracy, and the model’s performance outperforms existing methods. This approach exhibits the potential of deep learning in monitoring patient progress effectively in speech and vision therapy, offering valuable insights for improving treatment outcomes. The proposed system’s effectiveness is assessed by various performance metrics. The suggested system’s results are compared with those of other methods already in use. The study’s findings indicate that the suggested approach is more accurate than other existing models. In conclusion, this study offers important new information on how deep learning methods are being used to track patients’ progress in speech and vision therapy.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3