A relational extraction approach based on multiple embedding representations and multi-head self-attention

Author:

Qin Zhi1,Liu Enyang1,Zhang Shibin1,Chang Yan1,Yan Lili1

Affiliation:

1. School of Cybersecurity, Chengdu University of Information Technology, Chengdu, Sichuan, China

Abstract

Currently, word segmentation errors and polysemy problems are common in the field of Chinese relationship extraction. Although character-based model input can avoid word segmentation errors, in order to obtain the word information of a sentence, it is often necessary to introduce a dictionary or an external knowledge base to expand the word information, which requires a lot of manpower and time. In response to the above existing problems, this article uses characters as input, uses multiple embedding models to jointly form a character vector sequence, and obtains features containing character information through BiLSTM and attention layers; considering that convolutional neural networks are good at extracting local features, obtain features containing word information through multi-kernel convolutional layers and multi-head self-attention layers, and finally use a gating mechanism to fuse the features. The model was tested on the public SanWen data set and our own cultural-travel data set, and obtained F1 values of 61.22% and 60.26% respectively. Experimental results show that our method can achieve better relationship extraction effects without using word segmentation tools and without building a dictionary or external knowledge base, and the effect is better than most commonly used models currently.

Publisher

IOS Press

Reference15 articles.

1. A survey on knowledge graphs: Representation, acquisition, and applications[J];Ji;IEEE Transactions on Neural Networks and Learning Systems,2021

2. A multi-channel deep neural network for relation extraction;Chen;IEEE Access,2020

3. Text sentiment orientation analysis based on multi-channel CNN and bidirectional GRU with attention mechanism;Cheng;IEEE Access,2020

4. RelEx–Relationextraction using dependency parse trees[J];Fundel;Bioinformatics,2007

5. Chinese entity relationship extraction based on feature combination[J];Huang;Microelectronics and Computers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3