Natural language command parsing for agricultural measurement and control based on AMR and entity recognition

Author:

Yuan Weihao1,Yang Mengdao1,Gu Hexu1,Xu Gaojian1

Affiliation:

1. School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, China

Abstract

There is scope to enhance agricultural measurement and control systems user interactivity, which typically necessitates training for users to perform specific operations successfully. With the continuous development of natural language semantic processing technology, it has become essential to augment the user-friendliness of multifaceted control and query operations in the agricultural measurement and control sector, ultimately leading to reduced operation costs for users. The study aims to focus on command parsing. The proposed AMR-OPO semantic parsing framework is based on the natural language understanding method of Abstract Meaning Representation of Rooted Markup Graphs (AMR). It transforms the user’s natural language inputs into structured ternary (OPO) statements (operation-place-object) and converts the corresponding parameters of the user’s input commands. The framework subsequently sends the transformed commands to the relevant devices via the IoT gateway. To tackle the intricate task of parsing instructions, we developed a BERT-BiLSTM-ATT-CRF-OPO entity recognition model. This model can detect and extract entities from agricultural instructions, and precisely populate them into OPO statements. Our model shows exceptional accuracy in instruction parsing, with precision, recall, and F-value all measuring at 92.13%, 93.12%, and 92.76%, correspondingly. The findings from our experiment reveal outstanding and precise performance of our approach. It is anticipated that our algorithm will enhance the user experience offered by agricultural measurement and control systems, while also making them more user-friendly.

Publisher

IOS Press

Reference10 articles.

1. Human computer interaction and application in agriculture for education;;Razali;Int. J. Inf. Technol. Comput. Sci,2012

2. The graphical user interface;Jansen,;ACM SIGCHI Bulletin,1998

3. Natural language spoken interface control using data-driven semantic inference;Bellegarda;IEEE Transactions on Speech and Audio Processing,2003

4. SCADA-NLI: A natural language query and control interface for distributed systems;Wu;IEEE Access,2021

5. Survey on abstract meaning representation;Qu;Journal of Data Acquisition & Processing,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3