GRU combined model based on multi-objective optimization for short-term residential load forecasting

Author:

Yi Lingzhi1,Peng Xinlong1,Fan Chaodong2,Wang Yahui13,Li Yunfan1,Liu Jiangyong1

Affiliation:

1. College of Automation and Electronic Engineering, Xiangtan University & Hunan Engineering Research Center of Multi-energy Cooperative Control Technology, Xiangtan, Hunan, China

2. School of Computer Science and Technology, Hainan University, Hainan, China

3. College of Electrical and Information Engineering, Hunan University, Changsha, China

Abstract

Reliable and accurate short-term forecasting of residential load plays an important role in DSM. However, the high uncertainty inherent in single-user loads makes them difficult to forecast accurately. Various traditional methods have been used to address the problem of residential load forecasting. A single load forecast model in the traditional method does not allow for comprehensive learning of data characteristics for residential loads, and utilizing RNNs faces the problem of long-term memory with vanishing or exploding gradients in backpropagation. Therefore, a gated GRU combined model based on multi-objective optimization is proposed to improve the short-term residential load forecasting accuracy in this paper. In order to demonstrate the effectiveness, GRUCC-MOP is first experimentally tested with the unimproved model to verify the model performance and forecasting effectiveness. Secondly the method is evaluated experimentally with other excellent forecasting methods: models such as DBN, LSTM, GRU, EMD-DBN and EMD-MODBN. By comparing simulation experiments, the proposed GRU combined model can get better results in terms of MAPE on January, April, July, and November load data, so this proposed method has better performance than other research methods in short-term residential load forecasting.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3