Augmenting Imaging Biomarker Performance with Blood-Based Gene Expression Levels for Predicting Alzheimer’s Disease Progression

Author:

Dobromyslin Vitaly I.1,Megherbi Dalila B.1,

Affiliation:

1. Center for Computer Machine/Human Intelligence Networking and Distributed Systems, University of Massachusetts, Lowell, MA, USA

Abstract

Background: Structural brain imaging metrics and gene expression biomarkers have previously been used for Alzheimer’s disease (AD) diagnosis and prognosis, but none of these studies explored integration of imaging and gene expression biomarkers for predicting mild cognitive impairment (MCI)-to-AD conversion 1-2 years into the future. Objective: We investigated advantages of combining gene expression and structural brain imaging features for predicting MCI-to-AD conversion. Selection of the differentially expressed genes (DEGs) for classifying cognitively normal (CN) controls and AD patients was benchmarked against previously reported results. Methods: The current work proposes integrating brain imaging and blood gene expression data from two public datasets (ADNI and ANM) to predict MCI-to-AD conversion. A novel pipeline for combining gene expression data from multiple platforms is proposed and evaluated in the two independents patient cohorts. Results: Combining DEGs and imaging biomarkers for predicting MCI-to-AD conversion yielded 0.832-0.876 receiver operating characteristic (ROC) area under the curve (AUC), which exceeded the 0.808-0.840 AUC from using the imaging features alone. With using only three DEGs, the CN versus AD predictive model achieved 0.718, 0.858, and 0.873 cross-validation AUC for the ADNI, ANM1, and ANM2 datasets. Conclusion: For the first time we show that combining gene expression and imaging biomarkers yields better predictive performance than using imaging metrics alone. A novel pipeline for combining gene expression data from multiple platforms is proposed and evaluated to produce consistent results in the two independents patient cohorts. Using an improved feature selection, we show that predictive models with fewer gene expression probes can achieve competitive performance.

Publisher

IOS Press

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3