Hybrid convolutional neural networks in human resource recommendation

Author:

Huang Nannan,Wang Xue

Abstract

The study proposes a new algorithm combining a gradient boosting tree algorithm with a hybrid convolutional neural network in order to design a better human resource recommendation algorithm to solve the problem of employment difficulties and recruitment difficulties. The algorithm combines the excellent feature transformation ability of gradient boosting trees with the excellent classification ability of hybrid convolutional neural networks, complementing the shortcomings of each of the two algorithms. The outcomes showed that the algorithm performed best with the learning rate set to 0.3 and the maximum tree depth set to 3. The algorithm now has the lowest loss percentage and highest F1-Score value. The maximum-median hybrid pooling approach used in the study had considerable improvements over the algorithm’s pooling strategy (PS), and it had the greatest recall and F1-Score values of all pooling strategies (0.8108 and 0.7418, respectively). The new algorithm outperformed the gradient boosting tree algorithm and the hybrid convolutional neural network algorithm in terms of recall and F1-Score values, and regardless of the length of the job recommendation, the recall and F1-Score values of the new algorithm were consistently higher than those of the old algorithm. The recall and F1-Score values of the new algorithm, with a job recommendation length of 70, were 0.8198 and 0.7432, respectively, both greater than those of the other algorithms, according to a comparison of it with other conventional HR recommendation algorithms. The study’s newly created algorithm increases the efficacy and precision of HR suggestions.

Publisher

IOS Press

Reference18 articles.

1. Assessing the impact of socially responsible human resources management on company environmental performance and cost of debt;Gangi;Corporate Social Responsibility and Environmental Management,2021

2. Organisational paranoia and employees’ commitment: Mediating effect of human resources policies;Monyei;International Journal of Scientific & Technology Research,2021

3. Human resource recommendation algorithm based on improved frequent itemset mining;Liu;Future Generation Computer Systems,2021

4. Recommending human resources to project leaders using a collaborative filtering-based recommender system: Case study of gitHub;Ajoudanian;Software, IET,2019

5. Labelling training samples using crowdsourcing annotation for recommendation;Tao;Complexity,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3