Enhancing alzheimer’s diagnosis through optimized brain lesion classification in MRI with attention-driven grid feature fusion

Author:

Mohanty Manas Ranjan1,Mallick Pradeep Kumar1,Navandar Rajesh Kedarnath2,Chae Gyoo-Soo3,Jagadev Alok Kumar1

Affiliation:

1. School of Computer Engineering, KIIT Deemed to be University, Odisha, India

2. Department of Electronic and Telecommunication Engineering, JSPM Jayawantrao Sawant College of Engineering Hadaspar, Pune, India

3. Division of Advanced IT, Baekseok University, Korea

Abstract

This paper explores cognitive interface technology, aiming to tackle current challenges and shed light on the prospects of brain-computer interfaces (BCIs). It provides a comprehensive examination of their transformative impact on medical technology and patient well-being. Specifically, this study contributes to addressing challenges in classifying brain lesion images arising from the complex nature of lesions and limitations of traditional deep learning approaches. It introduces advanced feature fusion models that leverage deep learning algorithms, including the African vulture optimization (AVO) algorithm. These models integrate informative features from multiple pre-trained networks and employ innovative fusion techniques, including the attention-driven grid feature fusion (ADGFF) model. The ADGFF model incorporates an attention mechanism based on the optimized weights obtained using AVO. The objective is to improve the overall accuracy by providing fine-grained control over different regions of interest in the input image through a grid-based technique. This grid-based technique divides the image into vertical and horizontal grids, simplifying the exemplar feature generation process without compromising performance. Experimental results demonstrate that the proposed feature fusion strategies consistently outperform individual pre-trained models in terms of accuracy, sensitivity, specificity, and F1-score. The optimized feature fusion strategies, particularly the GRU-ADGFF model, further enhance classification performance, outperforming CNN and RNN classifiers. The learning progress analysis shows convergence, indicating the effectiveness of the feature fusion strategies in capturing lesion patterns. AUC-ROC curves highlight the superior discriminatory capabilities of the ADGFF-AVO strategy. Five-fold cross-validation is employed to assess the performance of the proposed models, demonstrating their accuracy, and few other accuracy-based measures. The GRU-ADGFF model optimized with AVO consistently achieves high accuracy, sensitivity, and AUC values, demonstrating its effectiveness and generalization capability. The GRU-ADGFF model also outperforms the majority voting ensemble technique in terms of accuracy and discriminative ability. Additionally, execution time analysis reveals good scalability and resource utilization of the proposed models. The Friedman rank test confirms significant differences in classifier performance, with the GRU-ADGFF model emerging as the top-performing method across different feature fusion strategies and optimization algorithms.

Publisher

IOS Press

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3