Classification from positive and unlabeled data based on likelihood invariance for measurement

Author:

Yoshida Takeshi,Washio Takashi,Ohshiro Takahito,Taniguchi Masateru

Abstract

We propose novel approaches for classification from positive and unlabeled data (PUC) based on maximum likelihood principle. These are particularly suited to measurement tasks in which the class prior of the target object in each measurement is unknown and significantly different from the class prior used for training, while the likelihood function representing the observation process is invariant over the training and measurement stages. Our PUCs effectively work without estimating the class priors of the unlabeled objects. First, we present a PUC approach called Naive Likelihood PUC (NL-PUC) using the maximum likelihood principle in a nontrivial but rather straightforward manner. The extended version called Enhanced Likelihood PUC (EL-PUC) employs an algorithm iteratively improving the likelihood estimation of the positive class. This is advantageous when the availability of the labeled positive data is limited. These characteristics are demonstrated both theoretically and experimentally. Moreover, the practicality of our PUCs is demonstrated in a real application to single molecule measurement.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Theoretical Computer Science

Reference29 articles.

1. Y. Bengio, O. Delalleau and N.L. Roux, Efficient non-parametric function induction in semi-supervised learning, in Proc. AISTATS05: the 10th International Workshop on Artificial Intelligence and Statistics, 2005, pp. 96–103.

2. Semi-supervised novelty detection;Blanchard;J. Machine Learning Research,2010

3. Wrapper positive bayesian network classifiers;Calvo;Knowledge and Information Systems,2010

4. Class-prior estimation for learning from positive and unlabeled data;du Plessis;Proc. ACML15: the 7th Asian Conf. on Machine Learning,2015

5. Semi-supervised learning of class balance under class-prior change by distribution matching;du Plessis;Neural Networks,2014

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3