Brain image segmentation with fuzzy entropy clustering and PSO-GWO optimization techniques

Author:

Nayak Gouri Sankar1,Mallick Pradeep Kumar1,Padhi Neelmadhab2,Mohanty Manas Ranjan1,Kumar Sachin3,Balaji Prasanalakshmi4

Affiliation:

1. School of Computer Engineering, Kalinga Institute of Industrial Technology (KIIIT) Deemed to be University, Bhubaneswar, Odisha, India

2. School of Computer Science and Engineering, GIET University, Gunupur, India

3. Big Data and Machine Learning, South Ural State University, Chelyabinsk, Russia

4. Department of Computer Science, College of Computer Science, King Khalid University, Abha, Saudi Arabia

Abstract

In the field of brain MRI analysis, image segmentation serves various purposes such as quantifying and visualizing anatomical structures, analyzing brain changes, delineating pathological regions, and aiding in surgical planning and image-guided interventions. Over the past few decades, diverse segmentation techniques with varying degrees of accuracy and complexity have been developed. Real-world brain MRI images often encounter intensity in homogeneity, posing a significant challenge in accurate segmentation. The prevailing image segmentation algorithms, predominantly region-based, typically rely on the homogeneity of image intensities in specific regions of interest. However, these methods often fall short of providing precise segmentation results due to intensity in homogeneity. To address these challenges and enhance segmentation performance, this paper introduce a novel objective function named Fuzzy Entropy Clustering with Local Spatial Information and Bias Correction (FECSB). Additionally, we propose a novel hybrid algorithm that combines Particle Swarm Optimization (PSO) and Grey Wolf Optimization (GWO) to maximize the effectiveness of the FECSB function in MRI brain image segmentation. The proposed algorithm undergoes rigorous evaluation using benchmark MRI brain images, including those from the McConnell Brain Imaging Center (BrainWeb). The experimental results unequivocally demonstrate the superiority of the PSO-GWO clustering method over the traditional Fuzzy C Means (FCM) method. Across various image slices, the PSO-GWO method consistently outperforms FCM in terms of accuracy, showing improvements ranging from 1.28% to 1.46%, approximately achieving 99.37% accuracy.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3