Author:
Vasantham Vijay Kumar,Donavalli Haritha
Abstract
The new and rising paradigm of cloud computing offers customers various possibilities of task computation based on their desires and choices. Customers receive services from cloud computing systems as a utility. Customers are enthusiastic about low-cost service availability and task completion times that are kept to be minimum. To achieve client fulfilment, the service provider must schedule the jobs to the right resources if the cloud server gets many user requests. The rapid growth in data volume necessitates petabytes processing of data each day. Unstructured, semi-structured, and structured data are all described in terms of their rapid growth and availability. In order to make correct and timely decisions, it must be processed appropriately. In this research, we present BWUJS (Black Widow Updated Jellyfish Search), a multi-objective hybrid optimization-based task scheduling algorithm. This work considers task generation from the Bigdata perspective. The clustering of tasks is performed via the Map Reduce framework with an Improved K-means clustering model. After task clustering, the task priority estimation is performed. Finally, the scheduling is performed via BWJSU based on certain constraints like priority, makespan, completion time, resource utilization, and degree of imbalance.