Flexibility measurement model of multi-agent systems

Author:

Benaboud Rohallah,Marir Toufik

Abstract

Flexibility is considered as one of the key objectives of agent-based technology. Despite this, we still lack a fundamental understanding of just what “flexibility in multi-agent system (MAS)” really is. Two main questions must be asked. First, how do agents and MAS achieve a high degree of flexibility? Second, what makes one agent or one MAS more flexible than others agents or others MASs? This paper addresses the answer to these two questions by proposing an ontology of the flexibility property and a mathematical measurement model for this property. The proposed ontology gives a comprehensive view of the flexibility by decomposing it on several characteristics and presents several techniques for implementing each characteristic. In addition, it relates these characteristics to MAS components. The proposed model presents a set of metrics for measuring the different characteristics of the flexibility property. The proposed metrics have been applied to JADE applications using a tool developed for this purpose.

Publisher

IOS Press

Subject

General Computer Science

Reference56 articles.

1. Flexibility: A key factor to testability;Abdullah;International Journal of Software Engineering & Applications (IJSEA),2015

2. Multi-agent systems: A survey;Dorri;In IEEE Access,2018

3. Towards integration of fault tolerance in agent-based systems;Haqiq;Procedia Computer Science,2018

4. A. Masuyama, Idea and practice of flexible manufacturing system of toyota, in: Proceedings of the 7th International Conference on Production Research, Windsor, Ont., 1983, pp. 584–590.

5. A. Quraishi, A. Bahr, F. Schill and A. Martinoli, A Flexible Navigation Support System for a Team of Underwater Robots, in: 2019 International Symposium on Multi-Robot and Multi-Agent Systems (MRS), IEEE, 2019, pp. 70–75.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3