Design of the third-generation neutron spallation target for the CERN’s n_TOF facility

Author:

Esposito Raffaele12,Calviani Marco1

Affiliation:

1. European Laboratory for Particle Physics (CERN), Switzerland. E-mails: raffaele.esposito@cern.ch, marco.calviani@cern.ch

2. École Polytechnique fédérale de Lausanne (EPFL), Switzerland

Abstract

The neutron Time-Of-Flight (n_TOF) facility at the European Laboratory for Particle Physics (CERN) is a pulsed white-spectrum neutron spallation source producing neutrons for two experimental areas: EAR1, located 185 m downstream of the spallation target, and EAR2, located 20 m above the target. The facility is based on a lead target impacted by a high-intensity 20 GeV/c proton beam. It is designed to study neutron-nucleus interactions for neutron kinetic energies from a few meV to several GeV, with applications in nuclear astrophysics, nuclear technology, and medical research. The facility is undergoing a major upgrade in 2019–2020, which will include the installation of the new third-generation target. The second-generation target consists in a water-cooled lead cylinder, while the new target will be cooled by nitrogen to avoid erosion-corrosion phenomena and contamination of the cooling water with radioactive lead spallation products. The new design will be optimized also for the vertical flight path. The operation of the new spallation target will start in 2021. This paper presents an overview on the evolution of the design and on the related R&D activities (including beam irradiation tests) carried out to ensure the best performance for both experimental areas and avoid the contamination issues of the previous targets.

Publisher

IOS Press

Subject

Nuclear Energy and Engineering,Nuclear and High Energy Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of a cross-linker agent on mechanical and other properties of polysiloxane based scintillators;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2024-10

2. The n_TOF facility at CERN;EPJ Web of Conferences;2024

3. The n_TOF facility at CERN;EPJ Web of Conferences;2024

4. Electronics Irradiation With Neutrons at the NEAR Station of the n_TOF Spallation Source at CERN;IEEE Transactions on Nuclear Science;2023-08

5. Numerical investigation and benchmarking of heat transfer and pressure loss characteristics with two-sided rib-roughened and two-sided heat supply in narrow rectangular channels;Thermal Science and Engineering Progress;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3