A multi-average based pseudo nearest neighbor classifier

Author:

Li Dapeng1,Guo Jing1

Affiliation:

1. School of Software Engineering, Jinling Institute of Technology, Nanjing, China

Abstract

Conventional k nearest neighbor (KNN) rule is a simple yet effective method for classification, but its classification performance is easily degraded in the case of small size training samples with existing outliers. To address this issue, A multi-average based pseudo nearest neighbor classifier (MAPNN) rule is proposed. In the proposed MAPNN rule, k ( k − 1 ) / 2 ( k > 1) local mean vectors of each class are obtained by taking the average of two points randomly from k nearest neighbors in every category, and then k pseudo nearest neighbors are chosen from k ( k − 1 ) / 2 local mean neighbors of every class to determine the category of a query point. The selected k pseudo nearest neighbors can reduce the negative impact of outliers in some degree. Extensive experiments are carried out on twenty-one numerical real data sets and four artificial data sets by comparing MAPNN to other five KNN-based methods. The experimental results demonstrate that the proposed MAPNN is effective for classification task and achieves better classification results in the small-size samples cases comparing to five relative KNN-based classifiers.

Publisher

IOS Press

Reference27 articles.

1. Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework;Alcalá-Fdez;Journal of Multiple-Valued Logic and Soft Computing,2011

2. K. Bache and M. Lichman, UCI Machine Learning Repository, 2013, http://archive.ics.uci.edu/ml/.

3. Nearest neighbor pattern classification;Cover;Journal of Robotics and Control,1967

4. Statistical comparisons of classifiers over multiple data sets;Demšar;Journal of Machine Learning Research,2006

5. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms;Derrac;Swarm and Evolutionary Computation,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3