Evaluating Web Content Using the W3C Credibility Signals

Author:

Avilés Podgurski León Viktor1,Zaczynska Karolina2,Rehm Georg2

Affiliation:

1. Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany

2. DFKI GmbH, Alt-Moabit 91c, 10559 Berlin, Germany

Abstract

The credibility and trustworthiness of online content has become a major societal issue as human communication and information exchange continues to evolve digitally. The prevalence of misinformation, circulated by fraudsters, trolls, political activists and state-sponsored actors, has motivated a heightened interest in automated content evaluation and curation tools. We present an automated credibility evaluation system to aid users in credibility assessments of web pages, focusing on the automated analysis of 23 mostly language- and content-related credibility signals of web content. We find that emotional characteristics, various morphological and syntactical properties of the language, and exclamation mark and all caps usage are particularly indicative of credibility. Less credible web pages have more emotional, shorter and less complex texts, and put a greater emphasis on the headline, which is longer, contains more all caps and is frequently clickbait. Our system achieves a 63% accuracy in fake news classification, and a 28% accuracy in predicting the credibility rating of web pages on a five-point Likert scale.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3