Chapter 13. Class Expression Learning with Multiple Representations

Author:

Ngomo Axel-Cyrille Ngonga1,Demir Caglar1,Kouagou N’Dah Jean1,Heindorf Stefan1,Karalis Nikoloas1,Bigerl Alexander1

Affiliation:

1. Paderborn University

Abstract

Knowledge bases are now first-class citizens of the Web. Circa 50% of the 3.2 billion websites in the 2022 crawl of Web Data Commons contains knowledge base fragments in RDF. The 82 billion assertions known to exist in these websites are complemented by a roughly comparable number of triples available in dumps. As this data is now the backbone of a number of applications, it stands to reason that machine learning approaches able to exploit the explicit semantics exposed by RDF knowledge bases must scale to large knowledge bases. In this chapter, we present approaches based on continuous and symbolic representations that aim to achieve this goal by addressing some of the main scalability bottlenecks of existing class expression learning approaches. While we focus on the description logic ALC , the approaches we present are far from being limited to this particular expressiveness.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3