Chapter 4. Semantic Web Machine Learning Systems: An Analysis of System Patterns

Author:

Waltersdorfer Laura1,Breit Anna2,Ekaputra Fajar J.31,Sabou Marta3,Ekelhart Andreas4,Iana Andreea5,Paulheim Heiko5,Portisch Jan5,Revenko Artem2,ten Teije Annette6,van Harmelen Frank6

Affiliation:

1. Technical University of Vienna (TU Wien)

2. Semantic Web Company

3. Vienna University of Economics and Business (WU Wien)

4. University of Vienna

5. University of Mannheim

6. VU Amsterdam

Abstract

In line with the general trend in artificial intelligence research to create intelligent systems that combine learning and symbolic techniques (a.k.a. neuro-symbolic systems), a new sub-area has emerged that focuses on combining machine learning (ML) components with techniques developed by the Semantic Web (SW) community – Semantic Web Machine Learning (SWeML for short). Due to the rapid growth of this area and its impact on several communities in the last two decades, there is a need to better understand the space of these SWeML Systems, their characteristics, and trends. Of particular interest are the emerging variations of processing patterns used in these systems in terms of their inputs/outputs and the order of the processing units. While several such neuro-symbolic system patterns were identified previously from a large number of papers, there is currently no insight into their adoption in the field, e.g., about the completeness of the introduced system patterns, or about their usage frequency. To fill that gap, we performed a systematic study and analyzed nearly 500 papers published in the last decade in this area, where we focused on evaluating the type and frequency of such system patterns. Overall we discovered 41 different system patterns, which we categorized into six pattern types. In this chapter we detail these pattern types, exemplify their use in concrete papers and discuss their characteristics in terms of their semantic and machine learning modules.

Publisher

IOS Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SPaRKLE : Symbolic caPtuRing of knowledge for Knowledge graph enrichment with LEarning;Proceedings of the 12th Knowledge Capture Conference 2023;2023-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3