Chapter 2. Neuro-Symbolic RDF and Description Logic Reasoners: The State-Of-The-Art and Challenges

Author:

Singh Gunjan1,Bhatia Sumit2,Mutharaju Raghava1

Affiliation:

1. Knowledgeable Computing and Reasoning (KRaCR) Lab, IIIT, Delhi, India

2. Media and Data Science Research (MDSR) Lab, Adobe Inc, Noida, India

Abstract

Ontologies are used in various domains, with RDF and OWL being prominent standards for ontology development. RDF is favored for its simplicity and flexibility, while OWL enables detailed domain knowledge representation. However, as ontologies grow larger and more expressive, reasoning complexity increases, and traditional reasoners struggle to perform efficiently. Despite optimization efforts, scalability remains an issue. Additionally, advancements in automated knowledge base construction have created large and expressive ontologies that are often noisy and inconsistent, posing further challenges for conventional reasoners. To address these challenges, researchers have explored neuro-symbolic approaches that combine neural networks’ learning capabilities with symbolic systems’ reasoning abilities. In this chapter, we provide an overview of the existing literature in the field of neuro-symbolic deductive reasoning supported by RDF(S), the description logics EL and ALC, and OWL 2 RL, discussing the techniques employed, the tasks they address, and other relevant efforts in this area.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3