A challenge for historical research: Making data FAIR using a collaborative ontology management environment (OntoME)

Author:

Beretta Francesco1

Affiliation:

1. Laboratoire de recherche historique Rhône-Alpes, CNRS – Université de Lyon, 14 avenue Berthelot, 69363 Lyon cedex 07, France. E-mail: francesco.beretta@cnrs.fr

Abstract

This paper addresses the issue of interoperability of data generated by historical research and heritage institutions in order to make them re-usable for new research agendas according to the FAIR principles. After introducing the symogih.org project’s ontology, it proposes a description of the essential aspects of the process of historical knowledge production. It then develops an epistemological and semantic analysis of conceptual data modelling applied to factual historical information, based on the foundational ontologies Constructive Descriptions and Situations and DOLCE, and discusses the reasons for adopting the CIDOC CRM as a core ontology for the field of historical research, but extending it with some relevant, missing high-level classes. Finally, it shows how collaborative data modelling carried out in the ontology management environment OntoME makes it possible to elaborate a communal fine-grained and adaptive ontology of the domain, provided an active research community engages in this process. With this in mind, the Data for history consortium was founded in 2017 and promotes the adoption of a shared conceptualization in the field of historical research.

Publisher

IOS Press

Subject

Computer Networks and Communications,Computer Science Applications,Information Systems

Reference35 articles.

1. Scientific Objectivity and Its Contexts

2. J. Akoka and I. Comyn-Wattiau, Conception des bases de données relationnelles, Vuibert, Paris, 2001.

3. J. Alerini and S. Lamassé, Données et statistiques. L’avenir du travail en ligne pour l’historien, in: Les historiens et l’informatique. Un métier à réinventer, École française de Rome, Rome, 2011, pp. 171–187.

4. Maintaining knowledge about temporal intervals;Allen;Communications of the ACM,1983

5. L. Audibert, Bases de données: de la modellisation au SQL, Ellipses, Paris, 2009.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3