HOMO-LUMO photosensitization analyses of coronene-cytosine complexes

Author:

Mirzaei Mahmoud1ORCID,Rasouli Amir Hossein2,Saedi Afsoon3

Affiliation:

1. Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran

2. Isfahan Pharmacy Students’ Research Committee, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran

3. Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

Photosensitization analyses of models of (–HC = CH–)n assisted coronene-cytosine complexes assigned by Cor-n-Cyt; n varying by 0, 1, 2, and 3, were investigated in this work by performing density functional theory (DFT) calculations. The investigated models were optimized and chemical descriptors were evaluated. To achieve the goal of this work, energy levels of the highest occupied and the lowest unoccupied molecular orbitals (HOMO and LUMO) were evaluated to reach the absorption energy requirement for innovating photosensitizer (PS) compounds. The models indicated that the complex formations could help the structures to participate in interactions easier than the singular models, in which HOMO-LUMO descriptors indicated lower required absorption energy for them to increase their safety for human health level. The required absorption energies of complexes with n = 0, 1, and 2, were in ultraviolet (UV) region whereas that of complex with n = 3 was moved to visible region. In this regard, the idea of new PS compounds innovation was examined here to introduce Cor-n-Cyt complexes for possible applications in photodynamic therapy (PDT).

Publisher

IOS Press

Subject

Materials Chemistry,Inorganic Chemistry,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3