Preparation of magnetic methotrexate nanocarrier coated with extracted hydroxyapatite of sea urchin (Echinometra mathaei)

Author:

Rajabiyan Ali1,Shakiba Maram Nader2,Ghatrami Ebrahim Rajabzadeh3,Zarei Ahmady Amanollah2ORCID

Affiliation:

1. Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

2. Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

3. Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Sciences and Technology, Khorramshahr, Iran

Abstract

New polymer-coated magnetic nanocarrier using magnetic iron oxide nanoparticles coated with chitosan and nanohydroxyapatite extracted from Sea urchin that both have anti-cancer properties showed good ability to Methotrexate (MTX) delivery. Iron oxide nanoparticles and hydroxyapatite prepared by co-precipitation and hydrothermal methods respectively. To stabilize the nanoparticles and optimization of the nanoparticles with hydroxyapatite, 3-chloropropyltrioethoxysilane and chitosan were performed. The water-soluble anticancer drug Methotrexate was selected as the drug model. The drug loading percentage was % 86.66, loading efficiency was % 99.5 and the polydispersity of the nanoparticles was 0.01. The kinetic pattern of drug release is consistent with the Peppas equation and the results of the thermal analysis confirm the stability of the crystalline form of the drug. The FTIR results and FE-SEM images showed that the nanoparticles were successfully prepared and coated and their size ranged from 30 nm to 1.5μm. The VSM analysis confirms the magnetic properties of the nanoparticles and the magnetic indices for the magnetic nanocarrier and the magnetic nanocarrier carrying MTX are 23 and 19 emu/g–1, respectively. The present study demonstrates the potential of iron oxide nanoparticles for the design of new magnetic nanocarrier and for guiding Methotrexate drug therapy in cancer chemotherapy.

Publisher

IOS Press

Subject

Materials Chemistry,Inorganic Chemistry,Organic Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3