Gaze Control in Microgravity: 1. Saccades, Pursuit, Eye-Head Coordination

Author:

André-Deshays C.1,Israël I.1,Charade O.1,Berthoz A.1,Popov K.2,Lipshits M.2

Affiliation:

1. Laboratoire de Physiologie da La Perception et de L’Action CNRS, Paris, France

2. Institute for Problems of Information Transmission, Academy of Sciences, Moscow, Russia

Abstract

During the long-duration spaceflight Aragatz on board the Mir station, an experiment exploring the different oculomotor subsystems involved in gaze control during orientation to a fixed target or when tracking a moving target was executed by two cosmonauts. Gaze orientation: with head fixed, the “main sequence” relationships of primary horizontal saccades were modified, peak velocity was higher and saccade duration was shorter in flight than on earth, latency was decreased and saccade accuracy was better in flight. With head free, gaze orientation toward the target was achieved by coordinated eye and head movements, their timing was maintained in the horizontal plane; when gaze was stabilized on the target, there was a trend of a larger eye than head contribution not seen in preflight tests. Pursuit: Horizontal pursuit at 0.25 and 0.5 Hz frequency remained smooth with a 0.98 gain and minor phase lag, on earth and in flight. In the vertical plane, the eye did not track the target with a pure smooth pursuit eye movement, but the saccadic system contributed to gaze control. Upward tracking was mainly achieved with a succession of saccades, whereas downward tracking was due to combined smooth pursuit and catch-up saccades. This asymmetry was maintained during flight in head fixed and head free situations. On earth head pea velocity was maxima upward, and in flight it was maximal downward.

Publisher

IOS Press

Subject

Clinical Neurology,Sensory Systems,Otorhinolaryngology,General Neuroscience

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3