Appropriate machine learning techniques for credit scoring and bankruptcy prediction in banking and finance: A comparative study
Author:
Affiliation:
1. LRIA/Computer Science Department, University of Sciences and Technology Houari Boumediene, , , , Algeria E-mails: dalila_info@yahoo.fr, dboughaci@usthb.dz
2. , , The Hashemite University, , Jordan E-mail: alkwaldhh@yahoo.com
Publisher
IOS Press
Subject
Statistics, Probability and Uncertainty,Economics and Econometrics,Finance,Statistics and Probability
Reference27 articles.
1. Credit scoring, statistical techniques and evaluation criteria: A review of the literature;Abdou;Intelligent Systems in Accounting, Finance and Management,2011
2. Genetic programming for credit scoring: The case of Egyptian public sector banks;Abdou;Expert Systems with Applications,2009
3. Improving experimental studies about ensembles of classifiers for bankruptcy prediction and credit scoring;Abellan;Expert Systems with Applications,2014
4. Support vector machines for credit scoring and discovery of significant features;Bellotti;Expert Systems with Applications,2009
Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Comparison of the impact of dimensionality reduction and data splitting on classification performance in credit risk assessment;Artificial Intelligence Review;2024-08-13
2. Financial ratios, credit risk and business strategy: Application to the PDO Parma ham sector in single production and non-single production firms;Journal of Agriculture and Food Research;2024-06
3. Advancing Bankruptcy Forecasting With Hybrid Machine Learning Techniques: Insights From an Unbalanced Polish Dataset;IEEE Access;2024
4. Safeguarding Cryptocurrency Transactions: Leveraging Blockchain and Machine Learning for Enhanced Financial Security;Smart Innovation, Systems and Technologies;2024
5. Is artificial intelligence and machine learning changing the ways of banking: a systematic literature review and meta analysis;Discover Artificial Intelligence;2023-12-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3