Deep learning approach for skin melanoma and benign classification using empirical wavelet decomposition

Author:

Azmy Mohamed Moustafa

Abstract

BACKGROUND: Melanoma is a malignant skin cancer that causes high mortality. Early detection of melanoma can save patients’ lives. The features of the skin lesion images can be extracted using computer techniques to differentiate early between melanoma and benign skin lesions. OBJECTIVE: A new model of empirical wavelet decomposition (EWD) based on tan hyperbolic modulated filter banks (THMFBs) (EWD-THMFBs) was used to obtain the features of skin lesion images by MATLAB software. METHODS: The EWD-THMFBs model was compared with the empirical short-time Fourier decomposition method based on THMFBs (ESTFD-THMFBs) and the empirical Fourier decomposition method based on THMFBs (EFD-THMFBs). RESULTS: The accuracy rates obtained for EWD-THMFBs, ESTFD-THMFBs, and EFD-THMFBs models were 100%, 98.89%, and 83.33%, respectively. The area under the curve (AUC) was 1, 0.97, and 0.91, respectively. CONCLUSION: The EWD-THMFBs model performed best in extracting features from skin lesion images. This model can be programmed on a mobile to detect skin lesions in rural areas by a nurse before consulting a dermatologist.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3